## ## RMA-MS sample code using a dummy example ## - this works as of BioC 2.3 in R-2.8.1 (Windows) ## ## First load data -- create an AffyBatch object called Data library(ALLMLL); data(MLL.B) Data <- MLL.B #AffyBatch object, 20 arrays ## Now define some functions (shouldn't need to change any of this) ###################################################################################### # RMA-MS: abatch is AffyBatch object, gn.sig is a vector of signal-possible geneNames rma.ms <- function(abatch,gn.sig) { rma.abatch <- bg.correct(abatch, method="ms", gn.sig=gn.sig) rma.abatch.norm <- qnorm.subset(rma.abatch,gn.sig) out.eset <- expresso(rma.abatch.norm,bg.correct=FALSE,normalize=FALSE, pmcorrect.method="pmonly",summary.method="medianpolish",summary.subset=gn.sig) return(out.eset) } # RMA-MS background correction; based on bg.correct.rma bg.correct.ms <- function (object, gn.sig, ...) { pn <- probeNames(object); t.sig <- is.element(pn,gn.sig) pm.mat <- pm(object); pm.sig <- apply(pm.mat, 2, bg.adjust.ms, t.sig=t.sig) pm.mat <- pm.sig; pm(object) <- pm.mat return(object) } bg.adjust.ms <- function (pm, n.pts = 2^14, t.sig, ...) { param <- bg.parameters.ms(pm, n.pts, t.sig) b <- param$sigma; pm <- pm - param$mu - param$alpha * b^2 pm + b * ((1/sqrt(2 * pi)) * exp((-1/2) * ((pm/b)^2)))/pnorm(pm/b) } bg.parameters.ms <- function (pm, n.pts = 2^14, t.sig) { pm.bg <- pm[!t.sig]; pm.sig <- pm[t.sig] mu.bg <- median(pm.bg); sd.bg <- mad(pm.bg) alpha.sig <- mean(pm.sig[pm.sig>mu.bg]) list(alpha = 1/alpha.sig, mu = mu.bg, sigma = sd.bg) # Note 1/alpha.sig } upDate.bgcorrect.methods(c(bgcorrect.methods(),"ms")) # Quantile normalize a subset of genes; based on normalize.AffyBatch.quantiles qnorm.subset <- function(abatch,subset) { pms <- unlist(pmindex(abatch,subset)) noNA <- rowSums(is.na(intensity(abatch)[pms, , drop = FALSE])) == 0 pms <- pms[noNA] intensity(abatch)[pms, ] <- normalize.quantiles(intensity(abatch)[pms, , drop = FALSE], copy = FALSE) return(abatch) } ###################################################################################### ## Now define signal-possible geneNames (gn.sp) and call rma.ms function library(affy); library(preprocessCore) gn.sp <- geneNames(Data)[1:1000] # vector of signal-possible geneNames (probeset ids) eset.ms <- rma.ms(Data,gn.sp) ## This final eset.ms object is an ExpressionSet object, with only ## expression estimates for signal-possible geneNames (in gn.sp)
Friday, April 11, 2014
R.sample.RMA-MS.call.txt human exon array
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment